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Recently, we presented a generalization of the Jarzynski nonequilibrium work theorem for phase space
mappings. The formalism shows that one can determine free energy differences from approximate trajectories
obtained from molecular dynamics simulations in which very large time steps are used. In this work we test the
method by simulating the force-induced unfolding of a deca-alanine helix in vacuum. The excellent agreement
between results obtained with a small, conservative time step of 0.5 fs and results obtained with a time step of
3.2 fs (i.e., close to the stability limit) indicates that the large-time-step approach is practical for such complex
biomolecules. We further adapt the method of Hummer and Szabo for the simulation of single molecule force
spectroscopy experiments to the large-time-step method. While trajectories generated with large steps are
approximate and may be unphysical—in the simulations presented here we observe a violation of the equipar-
tition theorem—the computed free energies are exact in principle. In terms of efficiency, the optimum time step
for the unfolding simulations lies in the range 1-3 fs.
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I. INTRODUCTION

Modern experimental techniques such as atomic force mi-
croscopy or optical tweezers offer the means to study the
mechanical properties of single molecules such as proteins or
nucleic acids, providing striking insights into their structure,
energetics, and dynamics [1-3]. In such experiments, finely
tuned forces are used to distort individual molecules and to
track their response with high resolution. Although mechani-
cal single molecule experiments can yield a wealth of useful
information, their thermodynamic analysis in terms of bind-
ing constants or unfolding free energies is not straightfor-
ward. This complication originates from the fact that typi-
cally the perturbation acting on the system is time dependent,
driving the system away from equilibrium. In such a non-
equilibrium situation the free energy, or reversible work, can-
not be simply calculated by integration of the average force
along the pulling path. A solution is offered by Jarzynski’s
theorem which relates equilibrium free energies to the statis-
tics of work carried out during nonequilibrium transforma-
tions [4,5].

According to the Jarzynski equality, the free energy dif-
ference AF between two states corresponding to different
values of an externally controlled parameter N can be ob-
tained from an exponential average of the work W performed
on the system by switching the parameter from its initial to
its final value:

e PAF = (¢=PW). (1)

The average, denoted by the angular brackets, extends over
all realizations of the switching process starting from a sys-
tem initially in equilibrium with a heat bath at temperature
T=1/kgT. In an experiment in which a single molecule—
say, a DNA fragment—is pulled by an optical trap, the ex-
ternal parameter A corresponds to the trap position and W is
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the work performed on the system by the moving trap. Since
the force exerted on the molecule by the optical trap can be
measured for every trap position, the work W can be calcu-
lated from the experimental data and the average from Eq.
(1) can be determined by repeating the pulling experiment
many times.

While such an analysis of the experimental data is pos-
sible, one is rarely interested in the free energy of the entire
system (molecule plus trap) as a function of the trap position.
Rather, the interest usually lies in the equilibrium free energy
of the untrapped molecule as a function of some conforma-
tional degree of freedom such as the end-to-end distance. A
way to extract that information from nonequilibrium work
data has been recently proposed by Hummer and Szabo
[6,7]. This method is based on the insight that the equilib-
rium distribution from which the transformation is initiated
can be reconstructed from the nonequilibrium distribution
generated in the process. This reconstruction, in which the
bias of the trap is removed, requires only knowledge of the
work carried out in the transformation as well as the time-
dependent trap potential, both quantities that are accessible
experimentally.

Information extracted from single molecule experiments
can be complemented with corresponding nonequilibrium
computer simulations which provide detailed atomistic pic-
tures of the molecule’s response to the mechanical perturba-
tion [8—10]. As is the case for the experiments, the calcula-
tion of equilibrium free energies from such simulations using
Jarzynski’s method or Hummer and Szabo’s refinement be-
comes increasingly difficult if the external perturbation
strongly removes the system from equilibrium. In this re-
gime, the exponential average from Eq. (1) is dominated by
a few rare trajectories leading to large statistical uncertainties
in the free energy estimate [11]. This difficulty may be over-
come in computer simulations by generating trajectories
yielding rare but important work values with enhanced like-
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lihood, and several techniques to do that have been devised
[12-15]. Using these biased sampling methods, the number
of nonequilibrium trajectories required to calculate free en-
ergies with a given accuracy can be dramatically lowered.

A different type of efficiency enhancement of such non-
equilibrium fast-switching simulations can be achieved by
reducing the computational cost required to generate the in-
dividual trajectories. We have recently proposed a method to
do that based on the integration of the equations of motion
with unusually large time steps [16,17]. Since the number of
steps required to propagate the system for a given time de-
creases with increasing time step, this approach promises
computational savings. Although approximate trajectories
obtained with large time steps mimic the true dynamics of
the system only crudely, the resulting free energies are in
principle exact, the obvious limitation being the numerical
stability of the integrator. In this paper, we investigate how
this large-time-step formalism performs in the simulation of
single molecule pulling experiments. To do that we first
show that the Hummer-Szabo procedure can be applied with-
out major changes to trajectories obtained with large time
steps. We then analyze the efficiency of the method for the
force-induced unfolding of deca-alanine and calculate the
free energy as a function of the end-to-end distance. These
simulations indicate that for time steps ranging from a con-
servative time step of 0.5 fs to a time step of 3.2 fs, just short
of the stability limit, the computational efficiency is essen-
tially constant. The time steps typically used in simulations
of such systems are in the range of 1-2 fs. A detailed analy-
sis of the trajectories obtained with different time steps re-
veals clear indications of their approximate character. In par-
ticular, we observe a sudden temperature drop of up to 5%
during the first few steps of the pulling trajectories, as the
time step is increased. This effect is most likely because of
the so-called shadow Hamiltonian that is conserved for sym-
plectic integrators such as the velocity-Verlet algorithm used
in this study.

The remainder of the paper is organized as follows. First,
in Sec. II, we review our large-time-step fast-switching
method and show how the Hummer-Szabo procedure can be
applied to this case. After that we describe the model system
in Sec. IIl. Results are presented in Sec. IV followed by
conclusions in Sec. V.

II. LARGE-TIME-STEP FAST SWITCHING

Any deterministic time evolution in phase space can be
viewed as a mapping that takes the initial point of a trajec-
tory into its final point. Expanding on this perspective, we
have recently derived a generalized version of the Jarzynski
identity that permits one to calculate exact free energies from
approximate large-time-step trajectories for both determinis-
tic and stochastic dynamics [16]. The basis for this approach
is provided by the following identity, which can be shown to
hold for a system with parameter-dependent Hamiltonian
H(x,\) and a general invertible and differentiable mapping
¢(x) acting on the phase space point x:

e PAF = (¢7PWsy (2)
Here, the angular brackets denote an average over the equi-

librium (canonical) distribution of the initial state. The work
function Wy, defined as
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IP(x)

Wy(x) = H(p(x),Np) = H(x,\g) = B In T

S E))

includes the total energy change caused by switching the
parameter N from its initial value A4 to its final value Ag. In
addition, a term depending on the Jacobian |d¢(x)/dx| of the
mapping contributes to the work function. If the mapping
¢(x) conserves the canonical distribution, this entropic term,
which takes into account the expansion or compression of
phase space volume, corresponds to the heat exchange [18].
In this case, Eq. (3) is equivalent to the first law of thermo-
dynamics.

To apply Eq. (3) to the case of large-time-step trajectories,
one has to consider the mapping that results from a concat-
enation of molecular dynamics steps. The work function then
consists of the difference in total energy between the initial
and final points of the trajectory and a sum of terms depend-
ing on the phase space volume change during each time step.
We emphasize that in principle Eq. (3) yields exact free en-
ergy differences regardless of the size of the time step.

The application of the large-time-step method becomes
particularly simple if the algorithm used for the integration
of the equations of motion conserves phase space volume. In
this case, the Jacobian is strictly unity for each time step and
the work function reduces to the energy difference accumu-
lated along the trajectory, W(x)=H(¢(x),\g)=H(x,\y). In
the present work we will only use the velocity-Verlet algo-
rithm, which is volume preserving [19,20]. A detailed discus-
sion of the large-time-step formalism for non-volume-
preserving integrators and related complications can be
found in Ref. [17].

Since Jarzynski’s identity holds for a time evolution re-
sulting from the integration of the equations of motion with
large time step, one expects that also the Hummer-Szabo
procedure mentioned above remains valid in this case. We
next show that this is indeed the case. Consider a system
with Hamiltonian

H(x,\p) = Ho(x) + V(g(x):N), (4)

where H(x) is the molecular Hamiltonian and V(g(x),\) is
the parameter-dependent trap potential coupling to the vari-
able g(x). What one would like to calculate is the free energy
F(g) defined up to a constant as

e PFD = (g - q(x) o, (5)

where the brackets (- - -), denote an average over the equilib-
rium distribution of the molecular system without the trap—
i.e., over the distribution

e—BHo(-’C)
pox) = —.
f dxe~PHo)

The goal now is to derive an expression that permits one to
compute the free energy from the phase space distribution
resulting from application of the mapping ¢(x) where at the
same time the parameter X\ is changed from its initial value
A4 to its final value Az To do so, we first perform a trans-
formation of variables from x to y=¢!(x), obtaining

(6)
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B L f dy
Qo

where Q= [dx exp[-BH,(x)] is the partition function of the
system without a trap. Multiplication and division of the in-

tegrand with exp{—BH(y,\4)]-BV(g(y),\p)} then yields

%‘” FOO 5~ g(dON], (7)

P = %eﬂwq’*ﬂkﬂq —q(p())]eFVs),  (8)
0

where

Oy = j dx ¢ PHOM) )

is the partition function of the entire system, including the
trap at position A4, and the average is over initial conditions
canonically distributed with respect to H(x,\,). Equation (8)
implies that the entire free energy profile F(g)=
—kgT In ([ g—q(x)])o can be calculated up to a constant by
histogramming the variable ¢ at the end of the transformation
¢(x) and weighing each contribution to the histogram with
the work exponential exp(—8W,). This weight essentially
takes into account the different phase space probability of a
particular point in the equilibrium ensemble and the en-
semble generated by the mapping. Equation (8) is analogous
to the central result of Hummer and Szabo [Eq. (7) of Ref.
[6]], which therefore is valid also for general phase space
mappings.

In the case of a molecular dynamics simulation, the map-
ping ¢(x) consists of a concatenation of a certain number of
time steps. Equation (8) can be applied at each stage of the
mapping and, accordingly, we rewrite it as

00 = L0 ) g _ (o)l e). (10)
Qo

Here, the index i refers to the number of steps the mapping
¢; and Wy, consists of is the work accumulated in the first i
steps. The parameter N is changed in discrete steps A; such

that A\g=N, and N\,=\p and n is the total number of steps.
In principle, the full free energy profile can be obtained
from data at one single time. For better accuracy one can
combine the free energy profiles for all time steps using the

weighted histogram technique introduced by Ferrenberg and
Swendsen [21]:

(g - q(¢i(x)) Jexp(= W)
(exp(= BW,))

exp[— BV(g:\)]
7 (exp(= BW,))

>

o BF@) = -

(11)

Combining the histograms for different times in this way,
each histogram contributes most where it has the highest
accuracy. In conclusion, we have demonstrated that the
method of Hummer and Szabo can be transferred essentially
without changes to the case of large-time-step trajectories.
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FIG. 1. (Color online) Deca alanine in its initial a-helical (top)
and its final coil configuration (bottom). The green atom on the
right-hand side stays fixed throughout the simulation while the
green atom on the left-hand side moves in a harmonic trap that is
translated from right to left, as indicated by the spring.

III. MODEL AND PULLING PROCESS

To investigate the computational efficiency of pulling
simulations with large time steps we study the force-induced
unfolding of a deca-alanine molecule in vacuum. This oligo-
peptide with an acetylated N-terminus and an amidated
C-terminus consists of ten alanine residues and forms an
a-helix that is stable in vacuum at room temperature (Fig. 1).
It has N=109 atoms and is therefore small enough to permit
the calculation of a large number of trajectories in a reason-
able amount of time, but is, on the other hand, close to the
systems treated in molecular biology or chemistry. Except
for the differing termini, the model is identical to the one
studied by Park et al. [22]. By using this system studied
previously as our test case, we can check the results obtained
with large time steps not only against our own calculations
with “safe” time steps, but against an external reference.

The unfolding process from the helix to the coil configu-
ration is induced by imposing a time-dependent trap poten-
tial V(g;r) on the amide nitrogen atom of the capped
C-terminus at position ¢ while keeping the nitrogen atom of
the first residue fixed at the origin. The harmonic trap poten-
tial V(g;1) is given by

Vg0 =3lg - 20T, (12)

where
72(t)=z;+ vt (13)

is the trap position and k is the force constant of the potential
which is set to k=14.38 kcal/(mol A2) in all simulations.
The trap is moved from its initial (r=0) position z; to its final
(r=7) position z; at constant speed v=(z;—z;)/ 7. The initial
trap position of z;=13 A is chosen such that the system starts
in a slightly compressed state where the end-to-end distance
is smaller than the equilibrium distance, which lies at about
15.4 A. The final position 7;=33 A leads to a fully unfolded
state. The trap speed v must be chosen sufficiently low such
that it allows good sampling using the Jarzynski equality. On
the other hand, it should be high enough to permit sampling
of sufficiently many trajectories. Following Park et al. [22],
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FIG. 2. (Color online) Histograms P(g) of the end-to-end-
distance ¢ for various time steps obtained from 5000 trajectories at
t=2 ns corresponding to the final position of the trap.

we chose a trap speed of 0.01 A/ps, which amounts to a
trajectory length of 2 ns.

The canonically distributed initial conditions, as required
by Jarzynski’s theorem, are generated from an equilibrium
Langevin molecular dynamics simulation at z(r)=z; with a
small time step of 1 fs. From this “base trajectory” we start a
nonequilibrium pulling trajectory every 1000 time steps us-
ing the velocity-Verlet algorithm. The CHARMM force field
version 27 was employed [23,24], and all calculations were
performed using the CHARMM [25] or NAMD [26] simulation
packages.

IV. RESULTS

In this section we first show that we obtain identical free
energy profiles (well within statistical error bars), regardless
of the time step used. We then discuss an interesting effect
we observed for the temperature behavior in our large-time-
step simulations. Finally, we address the central point of this
paper, the efficiency of the large-time-step method for the
calculation of free energy profiles.

A. Free energy profiles

From repeated pulling simulations one can collect sepa-
rate distributions of the end-to-end distance ¢ for every time
t;. Examples of such distributions obtained for the final po-
sition of the pulling trap for different time steps Ar are de-
picted in Fig. 2 along with the trap potential. Note that the
histograms do not differ significantly for the different time
steps and that the distributions are not centered at the mini-
mum of the trap potential but to the left of it, indicating that
the molecule slightly lags behind the trap potential.

Using the procedure of Hummer and Szabo, we have
combined the distributions corresponding to different times
obtaining the free energy as a function of the end-to-end
distance g. For the application of Eq. (11) it is important that
the histograms of the end-to-end distance have sufficiently
narrow bins. If not, the correction for the pulling potential in
the denominator of Eq. (11) varies too much within a bin,
thus giving the wrong correction factor. In our simulations
we used a bin size of 0.02 A. The free energy profiles calcu-
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FIG. 3. (Color online) Free energy profiles F(g) as function of
the end-to-end distance ¢ for various time steps obtained from 5000
trajectories using the Hummer-Szabo procedure.

lated with Eq. (11) are depicted in Fig. 3 and agree well with
the curves calculated by Park er al. [22]. As can be inferred
from the figure, all time steps yield the same result within
statistical deviations. The free energy profile F(g) displays a
minimum at an end-to-end distance of g= 15 A, correspond-
ing to the a-helical native state. For increasing ¢, the free
energy then grows almost linearly up to ¢~25 A. In this
regime, the hydrogen bonds in the helix are consecutively
cleaved. After all hydrogen bonds have been broken, the free
energy keeps growing, but at a smaller rate. No stable state
exists for the unfolded molecule.

B. Artifacts of large-time-step trajectories

The instantaneous temperature

T- 2<Ekin>’ (14)

3Nkg
during the pulling process averaged over 2000 trajectories is
depicted in Fig. 4 for various time steps. The overall tem-
perature behavior is similar for all time steps: after a small
rise occurring at a trap position of about 15 A, the tempera-
ture decreases steadily throughout the switching process.

310

3001

290

T. [K]

280

2701

FIG. 4. (Color online) Instantaneous temperature 7; as a func-
tion of the trap position z obtained for various time steps and aver-
aged over 2000 trajectories.
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FIG. 5. Schematic phase space portrait of the exact dynamics of
a harmonic oscillator (solid line) and of the dynamics obtained with
large time steps (dashed line).

However, the temperature traces differ by an essentially con-
stant offset which is due to a very sharp decline of up to 5%
from the 300 K of the Langevin base trajectory. This initial
temperature drop, which occurs during the first few integra-
tion steps, grows with increasing time step and is accompa-
nied by an increase in the potential energy such that the total
energy remains approximately constant. The potential energy
increase is mainly caused by an increase of the angle bending
potential energy terms and, to a smaller extent, of the bond
stretching interactions.

The redistribution of energy from kinetic to potential
terms suggests that the equipartition theorem may be vio-
lated for large-time-step trajectories. We indeed find that in
straightforward equilibrium MD simulations carried out with
time steps larger than 2 fs the kinetic energy of the hydrogen
atoms is up to =10% less than that of heavier atoms.

This phenomenon is most likely linked to the nearly har-
monic potentials used to model the angle bending and bond
stretching interactions and can be made plausible by consid-
ering a one-dimensional harmonic oscillator with Hamil-
tonian

2 2 2
P~ moyq
H(g.p)=—+ . (15)
2m 2

Here, g and p denote the position and the velocity of the
oscillator and m and w are its mass and frequency, respec-
tively. As is well known [19,28-30], symplectic integration
schemes like the velocity-Verlet algorithm do not conserve
the actual Hamiltonian of a system, but a time-step-
dependent “shadow Hamiltonian” Hp which converges to
the real Hamiltonian only in the limit of Ar—0. For the
harmonic oscillator this shadow Hamiltonian is known ana-
lytically [31]:

p*2m mw’q*
+
1 - (wAt/2)? 2

Hplq.p) = (16)
Starting from a given phase space point (gg,p,) the natural
dynamics of the harmonic oscillator traces out an ellipsoid
on which the Hamiltonian from Eq. (15) is conserved (solid
line in Fig. 5). However, a trajectory obtained by integrating
the equations of motion of the harmonic oscillator with finite
time step At lies on a curve on which the shadow Hamil-
tonian Hp(x,v) rather than the Hamiltonian H is conserved
(dashed line in Fig. 5). It follows from the specific form of
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FIG. 6. Relative deviation AT/T of the kinetic temperature from
the temperature of the initial conditions (symbols) as a function of
A#%. The line is a linear fit to the data with slope —0.0043 fs2.

the shadow Hamiltonian that this curve, which is also an
ellipsoid, is compressed on the momentum axis by a factor

P+ mP0’q(1 — w*Ar?4)

, 17
Po+m*w’q; "
but expanded on the position axis by a factor
2 2A 27401 4 pr202 2
- 0" Ar/4)" + m w
ol 2) = ‘Io’ (18)

2
Pot+m w-q,

with respect to the ellipsoid defined by a constant Hamil-
tonian. Thus, increasing the integration time step Az leads to
a decrease in the average kinetic energy and, at the same
time, to an increase of the average potential energy.

Under the assumption that the dynamics obtained by ap-
plication of the velocity-Verlet algorithm is nearly continu-
ous, a canonical average of the kinetic and potential energies
averaged over one oscillation period yields

kBT( sztz)
Ky=—/1- 19
(K) 5 3 (19)
and
kBT( 1- szt2/8>
Vi=—rA|————], 20
( 2 \1-w?AP/4 (20)

respectively. The deviation ATy;,/T of the kinetic tempera-
ture Ty;,=2(K)/kg from the temperature 7 of the distribution
of the initial conditions is then obtained from the averaged
kinetic energy according to

w?Ar?

ATyin _ Tiin—T __ 1)
T T g8

The quadratic dependence of the temperature drop from
the time step expected for a system with nearly harmonic
degrees of freedom can be tested for the deca-alanine mol-
ecule. Figure 6 shows the relative temperature drop obtained
from the data depicted in Fig. 4 as a function of Ar* along
with a linear fit to the data. Approximately, the relative tem-
perature drops follow the quadratic behavior found in the
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harmonic oscillator. Moreover, the slope of the fitted line is
consistent with the assumption that each hydrogen atom is
involved in exactly one harmonic degree of freedom and the
frequency of the corresponding motion is on the order of v
~3000 cm™!.

The above considerations suggest that the sudden drop of
the kinetic temperature observed for the deca-alanine with
increasing time step may be related to the particular form of
the shadow Hamiltonian corresponding to the nearly har-
monic degrees of freedom of the molecule. We stress, how-
ever, that this effect has no impact on the large-time-step
method, because the only requirements are a canonical en-
semble of initial conditions and a volume preserving integra-
tor such as the velocity-Verlet scheme. As long as these con-
ditions are met, the large-time-step method is valid
regardless of the unusual behavior of some energy compo-
nents.

C. Efficiency

To assess the efficiency of the large-time-step algorithm
we need a way to determine the statistical error in the free
energy profile as a function of the number of trajectories
used in the Jarzynski average. For this purpose we use a
block averaging method [32], analogous to Zuckerman and
Woolf [27]. First we partition all N trajectories into M
“blocks” of size n<N and introduce the free energy F,(q)
calculated by applying Eq. (11) only to the n trajectories of
block i. Then, we compute the statistical deviation—Eq.

(22)—of F 2(9) from the mean F(q), averaged over all trajec-
tories. To improve the accuracy of this error estimate we
average also over the end-to-end distances g:

Cw=13

[
52 ﬁngwfwf. (22)

Here, S is the number of end-to-end distances over which the
average extends and in all our calculations $S=1000. The
quantity C*(n) is the mean-square deviation of the block free
energy from the free energy obtained from all trajectories.
For a different approach to efficiency estimation in fast-
switching simulations, which, however, requires a larger
computational effort, see [16].

From the resulting curves C*(n), which are depicted in
Fig. 7, we can extract the number Ny, of trajectories needed
to obtain an accuracy of kg7. To do that we determine the
intersection of the correlation curves C2(n) with the error
threshold, shown as a red dashed line in Fig. 7. The threshold
of kgT is arbitrary, but, as the inset of Fig. 7 indicates, the
relative numbers N,, for different time steps are largely in-
dependent of the choice of the threshold.

The total computational cost required to obtain a free en-
ergy profile with an accuracy of kg7 is proportional to the
number of force evaluations performed in the calculation and
thus to the number L of time steps per trajectory:
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FIG. 7. (Color online) C*(n) as a function of the block size n for
different time steps and the threshold (kgT)>=0.355 (kcal/mol)?
(red dashed line). The inset shows the same graphs on a doubly
logarithmic scale.

T

cost(Ar) = LNy, = Ar

N, At- (23)
The cost function cost(A¢) is the total number of molecular
dynamics steps required to calculate the free energy with
accuracy kg7 or, in other words, the total computational cost
of the simulation in units of the cost of one single molecular
dynamics step. The behavior of the computational cost as a
function of the integration time step Az (see Fig. 8) indicates
that in the range Ar=1.0-3.2 fs the computational cost of the
free energy calculation is essentially constant while time
steps shorter than =1 fs lead to an increased computational
cost.

V. CONCLUDING REMARKS

The generalization of the Jarzynski theorem for invertible
and differentiable maps justifies the use of large time steps in
fast-switching simulations and thus permits the calculation of
valid free energies from computationally inexpensive trajec-
tories. In the present work we have adapted the Hummer-
Szabo procedure to large-time-step dynamics and have
shown that it is applicable to the simulation of complex bio-
molecules.

1.2x10°

1.0x10°

Cost

8.0x10

6.0x10"
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0.5 1 1.5

2
At [fs]

FIG. 8. Computational cost as a function of time step Az.
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Approximate large-time-step trajectories generated with
the velocity-Verlet algorithm display an interesting initial
temperature drop, which is most likely due to the specific
properties of the shadow Hamiltonian conserved by the dis-
crete dynamics. Although this effect leads to inaccurate tra-
jectories violating the equipartition theorem, it is irrelevant
for the validity of the large-time-step formalism since all its
requirements—a phase space volume conserving integrator
and a canonical distribution of initial conditions—are met
also in this case. It should be noted that the temperature jump
indicating the approximative nature of the trajectories can be
observed already at a time step of 2 fs, a value which is often
used in equilibrium simulations of protein and peptide sys-
tems. Thus, one may argue that the large-time-step approach
is more correct than a comparable calculation based on equi-
librium methods alone.

PHYSICAL REVIEW E 75, 061106 (2007)

The potential computational benefit of the large-time-step
method is in part compensated by a growth of statistical
fluctuations observed in simulations using computationally
inexpensive trajectories generated with larger time steps. All
time steps from about 1 fs up to the stability limit of the
integrator yield essentially the same efficiency. Time steps
smaller than about 1 fs, however, lead to an efficiency loss.
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